In this topic i will explain a very interesting data structure that can be used to solve a specific set of problems. I will start by explaining its definition and the proceeding with an example problem to solve with it.
Table of contents:
Table of contents:
- What is segment trees?
- Order of growth of segment trees operations
- Show me your code
- Lazy propagation
- Sample problems to try
- References
What is segment trees?
Segment Trees is a Tree data structure for storing intervals, or segments, It allows querying which of the stored segments contain a given point. It is, in principle, a static structure; that is, its content cannot be modified once the structure is built. It only uses O(N lg(N)) storage.
A segment trees has only three operations: build_tree, update_tree, query_tree.
Building tree: To init the tree segments or intervals values
Update tree: To update value of an interval or segment
Query tree: To retrieve the value of an interval or segment
Example Segment Tree:
- The first node will hold the information for the interval [i, j]
- If i<j the left and right son will hold the information for the intervals [i, (i+j)/2] and [(i+j)/2+1, j]
Order of growth of segment trees operations
- build_tree: O(N lg(N))
- update_tree: O(lg(N + k))
- query_tree: O(lg(N + k))
K = Number of retrieved intervals or segments
Show me your code
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* In this code we have a very large array called arr, and very large set of operations | |
* Operation #1: Increment the elements within range [i, j] with value val | |
* Operation #2: Get max element within range [i, j] | |
* Build tree: build_tree(1, 0, N-1) | |
* Update tree: update_tree(1, 0, N-1, i, j, value) | |
* Query tree: query_tree(1, 0, N-1, i, j) | |
*/ | |
#include<iostream> | |
#include<algorithm> | |
using namespace std; | |
#include<string.h> | |
#include<math.h> | |
#define N 20 | |
#define MAX (1+(1<<6)) // Why? :D | |
#define inf 0x7fffffff | |
int arr[N]; | |
int tree[MAX]; | |
/** | |
* Build and init tree | |
*/ | |
void build_tree(int node, int a, int b) { | |
if(a > b) return; // Out of range | |
if(a == b) { // Leaf node | |
tree[node] = arr[a]; // Init value | |
return; | |
} | |
build_tree(node*2, a, (a+b)/2); // Init left child | |
build_tree(node*2+1, 1+(a+b)/2, b); // Init right child | |
tree[node] = max(tree[node*2], tree[node*2+1]); // Init root value | |
} | |
/** | |
* Increment elements within range [i, j] with value value | |
*/ | |
void update_tree(int node, int a, int b, int i, int j, int value) { | |
if(a > b || a > j || b < i) // Current segment is not within range [i, j] | |
return; | |
if(a == b) { // Leaf node | |
tree[node] += value; | |
return; | |
} | |
update_tree(node*2, a, (a+b)/2, i, j, value); // Updating left child | |
update_tree(1+node*2, 1+(a+b)/2, b, i, j, value); // Updating right child | |
tree[node] = max(tree[node*2], tree[node*2+1]); // Updating root with max value | |
} | |
/** | |
* Query tree to get max element value within range [i, j] | |
*/ | |
int query_tree(int node, int a, int b, int i, int j) { | |
if(a > b || a > j || b < i) return -inf; // Out of range | |
if(a >= i && b <= j) // Current segment is totally within range [i, j] | |
return tree[node]; | |
int q1 = query_tree(node*2, a, (a+b)/2, i, j); // Query left child | |
int q2 = query_tree(1+node*2, 1+(a+b)/2, b, i, j); // Query right child | |
int res = max(q1, q2); // Return final result | |
return res; | |
} | |
int main() { | |
for(int i = 0; i < N; i++) arr[i] = 1; | |
build_tree(1, 0, N-1); | |
update_tree(1, 0, N-1, 0, 6, 5); // Increment range [0, 6] by 5 | |
update_tree(1, 0, N-1, 7, 10, 12); // Incremenet range [7, 10] by 12 | |
update_tree(1, 0, N-1, 10, N-1, 100); // Increment range [10, N-1] by 100 | |
cout << query_tree(1, 0, N-1, 0, N-1) << endl; // Get max element in range [0, N-1] | |
} |
Lazy Propagation
Sometimes a segment tree operation wouldn't survive if the problem constraints is too large, here it come lazy propagation along with the segment tree.
In the current version when we update a range, we branch its childs even if the segment is covered within range. In the lazy version we only mark its child that it needs to be updated and update it when needed.
Note: Read my solution for problem Can you answer these queries I in this article.
Sample Problems to try
References
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* In this code we have a very large array called arr, and very large set of operations | |
* Operation #1: Increment the elements within range [i, j] with value val | |
* Operation #2: Get max element within range [i, j] | |
* Build tree: build_tree(1, 0, N-1) | |
* Update tree: update_tree(1, 0, N-1, i, j, value) | |
* Query tree: query_tree(1, 0, N-1, i, j) | |
*/ | |
#include<iostream> | |
#include<algorithm> | |
using namespace std; | |
#include<string.h> | |
#include<math.h> | |
#define N 20 | |
#define MAX (1+(1<<6)) // Why? :D | |
#define inf 0x7fffffff | |
int arr[N]; | |
int tree[MAX]; | |
int lazy[MAX]; | |
/** | |
* Build and init tree | |
*/ | |
void build_tree(int node, int a, int b) { | |
if(a > b) return; // Out of range | |
if(a == b) { // Leaf node | |
tree[node] = arr[a]; // Init value | |
return; | |
} | |
build_tree(node*2, a, (a+b)/2); // Init left child | |
build_tree(node*2+1, 1+(a+b)/2, b); // Init right child | |
tree[node] = max(tree[node*2], tree[node*2+1]); // Init root value | |
} | |
/** | |
* Increment elements within range [i, j] with value value | |
*/ | |
void update_tree(int node, int a, int b, int i, int j, int value) { | |
if(lazy[node] != 0) { // This node needs to be updated | |
tree[node] += lazy[node]; // Update it | |
if(a != b) { | |
lazy[node*2] += lazy[node]; // Mark child as lazy | |
lazy[node*2+1] += lazy[node]; // Mark child as lazy | |
} | |
lazy[node] = 0; // Reset it | |
} | |
if(a > b || a > j || b < i) // Current segment is not within range [i, j] | |
return; | |
if(a >= i && b <= j) { // Segment is fully within range | |
tree[node] += value; | |
if(a != b) { // Not leaf node | |
lazy[node*2] += value; | |
lazy[node*2+1] += value; | |
} | |
return; | |
} | |
update_tree(node*2, a, (a+b)/2, i, j, value); // Updating left child | |
update_tree(1+node*2, 1+(a+b)/2, b, i, j, value); // Updating right child | |
tree[node] = max(tree[node*2], tree[node*2+1]); // Updating root with max value | |
} | |
/** | |
* Query tree to get max element value within range [i, j] | |
*/ | |
int query_tree(int node, int a, int b, int i, int j) { | |
if(a > b || a > j || b < i) return -inf; // Out of range | |
if(lazy[node] != 0) { // This node needs to be updated | |
tree[node] += lazy[node]; // Update it | |
if(a != b) { | |
lazy[node*2] += lazy[node]; // Mark child as lazy | |
lazy[node*2+1] += lazy[node]; // Mark child as lazy | |
} | |
lazy[node] = 0; // Reset it | |
} | |
if(a >= i && b <= j) // Current segment is totally within range [i, j] | |
return tree[node]; | |
int q1 = query_tree(node*2, a, (a+b)/2, i, j); // Query left child | |
int q2 = query_tree(1+node*2, 1+(a+b)/2, b, i, j); // Query right child | |
int res = max(q1, q2); // Return final result | |
return res; | |
} | |
int main() { | |
for(int i = 0; i < N; i++) arr[i] = 1; | |
build_tree(1, 0, N-1); | |
memset(lazy, 0, sizeof lazy); | |
update_tree(1, 0, N-1, 0, 6, 5); // Increment range [0, 6] by 5 | |
update_tree(1, 0, N-1, 7, 10, 12); // Incremenet range [7, 10] by 12 | |
update_tree(1, 0, N-1, 10, N-1, 100); // Increment range [10, N-1] by 100 | |
cout << query_tree(1, 0, N-1, 0, N-1) << endl; // Get max element in range [0, N-1] | |
} |
Note: Read my solution for problem Can you answer these queries I in this article.
Sample Problems to try
References